
文章插图
导读 : 随着阿里巴巴 App里 “ 为你推荐 ” 模块在全链路里地位的不断提升,“为你推荐”已经不再是一个单一的商品推荐渠道,它开始扮演更多的角色 。在大促期间,沉淀出一些很好的营销场景,如:榜单、必买清单,主题市场以及发现好货等 。我们希望营销场景作为卡片的形式插入到现有的为你推荐里,一方面是为这些场景分发流量,一方面是希望提高整体的坑位曝光收益 。今天,我们就来探秘如何插入这些营销场景卡片 。
前言
在阿里巴巴 APP 的“为你推荐”中,目前要插入的营销场景都是商品集合类型的,我们现阶段关注的核心是 IPV相关指标,故定义曝光收益作为我们的效果衡量指标,其计算公式如下:
曝光收益=

文章插图
在只有商品推荐的情况下,这个衡量指标其实就是 PV_CTR 。

文章插图

文章插图
图1 阿里巴巴 APP 首页为你推荐场景效果图
问题与方法
现有的资源,各个卡片业务方提供了商品与卡片的映射关系,为你推荐推荐出来的商品,那么在商品推荐里如何去插入这些营销场景卡片呢?
迭代前的状态
按一定的概率随机挂载一种卡片到推荐的商品上 。这种粗暴的做法,直接导致曝光收益下降 。因为完全不去考虑卡片的承接能力以及用户对卡片的偏好强度,指标会下降是很明显的,但快速累积了初始数据 。
弱个性化
我们定义了一个卡片质量分以及用户偏好分,最终一个商品是否要变成卡片以及变成哪种卡片不再是按设定概率随机挂载,而是通过图2的式子来挂载 。

文章插图
图2 卡片选择公式
于此同时不再简单地利用业务方提供的商品-卡片关系,而是从业务方提供的商品-卡片对集合中进行筛选,一个商品每种卡片类型下可能会映射有该类型多个卡片,通过卡片质量分来筛选,同时离线计算好用户卡片形态的偏好分 。上述二者每天同步到iGraph 中,在线调度的时候,在商品推荐结果上,依据图2公式对能触发卡片的商品进行卡片挂载选择 。同时,进行卡片的展示间隔控制,卡片与卡片之间至少有一定数量的商品,这样避免卡片堆积,从而进一步提高效果 。这种方法,相比迭代前,曝光收益提高了3.23%,但相比不出卡片的基准桶,依旧是下降的 。我们还对图2公式进行一系列的变种实验,但收效甚微 。
【阿里“推荐系统”背后的算法介绍】机器学习模型
给用户推荐的商品中,某些商品有 N 种卡片可以挂载,那么挂载哪个卡片用户点击的概率最高呢? 这就是我们的模型需要学习,这个可以转化为一个 CTR 预估问题 。按预估出来的 CTR 值排序,取 top1,但最终展示还有一定规则需要遵守,下文会阐述 。
■ 样本和特征
从为你推荐的数据里抽取可以挂载卡片的商品的曝光点击数据作为训练样本 。
特征分成三个部分,用户特征、触发品特征、卡片特征,商品形态作为一种特殊的卡片形态 。我们选用了85个特征作为模型输入,包括各种实数特征(62个)、Categorical 特征(19个)和交叉特征(4个): 实数特征主要是用户、触发品、卡片维度的一些统计特征 。例如,某个商品(触发品)在为你推荐平台上的 CTR、不同形态下的 CTR 的统计值 。
而对部份 Categorical 特征,我们采用对其进行embedding 处理再输入模型 。
■ 召 回
基于为你推荐最终的商品推荐结果,去我们筛选好的商品-卡片集合召回候选集合,即 item2item2card 。商品与卡片之间的映射关系,目前只是简单地采用了上述的卡片质量分,而没有考虑商品与卡片之间的关系,卡片整体承接效果好,不代表在某个触发品的情况下,承接效果也好 。故此考虑增加 item2theme 的方式,theme 表示 item-card 。我们直接利用多天卡片曝光点击数据,触发品(item)-卡片(card)对直接作为一个 item 实体看待,采用 SWING 算法进行构建 。线上 AB,增加这一路召回,相比没有这路召回的,曝光收益增加0.79% 。
■ 排序 模 型
推荐阅读
- 蒙顶茶是什么茶_
- 走进莺歌海盐场_山海相拥“雪”皑皑
- 冬奥赛事真正的发令枪!专业志愿者这样“追雪测风”
- “红茶养胃”之说到底有没道理?
- 茶垢致癌不科学 但不卫生
- 艺术|为啥“piano”叫钢琴 piano什么意思
- 六亲不认”是指哪“六亲” 六亲是哪六亲
- 买房想要少吃亏,小白一定要知道“远二近三”原则
- 如果遇到“空白劳动合同”,该怎么应对?
- 原来“一键启动”还有这些功能,只用来打火太浪费了,建议用起来!
