未完待续......
参考文献:
- 1. Luyao Chen, Z.C., Longsheng Jiang, Xiang Liu, Linlu Xu, Bo Zhang, Xiaolong Zou, Jinying Gao, Yu Zhu, Xizi Gong, Shan Yu, Sen Song, Liangyi Chen, Fang Fang, Si Wu, Jia Liu, AI of Brain and Cognitive Sciences: From the Perspective of First Principles. arXiv, 2023. 2301.08382.
- 2. Lim, S. and M.S. Goldman, Balanced cortical microcircuitry for maintaining information in working memory. Nat Neurosci, 2013. 16(9): p. 1306-14.
- 3. Blumenfeld, B., et al., Dynamics of memory representations in networks with novelty-facilitated synaptic plasticity. Neuron, 2006. 52(2): p. 383-94.
- 4. Liu, X., et al., Neural feedback facilitates rough-to-fine information retrieval. Neural Netw, 2022. 151: p. 349-364.
- 5. Xingsi Dong, T.C., Tiejun Huang, Zilong Ji, Si Wu, Noisy Adaptation Generates Lévy Flights in Attractor Neural Networks. Advances in Neural Information Processing Systems, 2021. Dec 6;34:16791-804.
- 6. Zhang, W.H., et al., Decentralized Multisensory Information Integration in Neural Systems. J Neurosci, 2016. 36(2): p. 532-47.
- 7. Zhang, W.H., et al., Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation. Elife, 2019. 8.
- 8. Mashour, G.A., et al., Conscious Processing and the Global Neuronal Workspace Hypothesis. Neuron, 2020. 105(5): p. 776-798.
- 9. Mcmillan, W.L., Monte-Carlo Simulation of the Two-Dimensional Random (+/-J) Ising-Model. Physical Review B, 1983. 28(9): p. 5216-5220.
- 10. Clauset, A., C.R. Shalizi, and M.E.J. Newman, Power-Law Distributions in Empirical Data. Siam Review, 2009. 51(4): p. 661-703.
- 11. Beggs, J.M. and D. Plenz, Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 2003. 23(35): p. 11167-11177.
- 12. Shew, W.L., et al., Neuronal Avalanches Imply Maximum Dynamic Range in Cortical Networks at Criticality. Journal of Neuroscience, 2009. 29(49): p. 15595-15600.
- 13. Zeng, G.X., et al., Short-term synaptic plasticity expands the operational range of long-term synaptic changes in neural networks. Neural Networks, 2019. 118: p. 140-147.
- 14. Poole, B., et al., Exponential expressivity in deep neural networks through transient chaos. Advances in Neural Information Processing Systems 29 (Nips 2016), 2016. 29.
推荐阅读
- 如何快速消除肿眼泡 晚上哭的早晨如何消肿
- 百度下拉词优化策略 如何优化、删除
- 局域网与Kubernetes内部网络如何互通
- 如何防范AI盗取您的密码
- 小红书如何应对万亿级社交网络关系挑战?图存储系统 REDtao 来了!
- 毛衣袖口太长怎么改小视频 毛衣袖口太长如何改小窍门
- 如何选择申请专利的类型
- 我,在农业银行工作,告诉你薪资待遇如何,曝光工作经历
- 如何选购汗蒸箱 汗蒸箱怎么选
- 怀孕如何防辐射 怀孕怎么防辐射
